
Next Level Unit Testing

Dominik Poljak, JavaCro, Umag, 14.5.2019.

dominik.poljak@ecx.io



Who frequently writes 
JUnit tests?





The ratio of time spent reading 
(code) versus writing is well 
over 10 to 1…
– Robert C. Martin, Clean Code



© ecx.io – an IBM Company

Benefits of Unit Testing

Code Quality

• Exposing edge cases

Finding Bugs

• bugs are found at early stage

Simplified Integration

• Better interfaces

Provides Documentation

• Documentation can be generated

Improves Debugging

• Easier to find issues



How to get the most
Value

with
Minimal Effort?



© ecx.io – an IBM Company

How to increase value and reduce effort while writing JUnit tests?

Increase READABILITY

• Introduce common structure

Make them EASY to write

• Use powerful and simple libraries

Make logic SIMPLE

• Make them independent (use mocking)

REUSE them as documentation

• Automate everything you can



© ecx.io – an IBM Company

Agenda

JUnit 4 Test Structure

Test Simplification via Mocking

Documentation Generation

8



JUnit4 Test Structure



© ecx.io – an IBM Company

JUnit Test Setup

Goal: 

Reusable

Configurable

Fast 

How:

Common Data

Common Objects 

(Mocks e.g. AemMocks)

Utilities



What is BDD?



© ecx.io – an IBM Company

• evolved from TDD

• shared language between tech and non-tech teams

• behavior focused

Behavioral Driven Development (BDD)



© ecx.io – an IBM Company

Simple BDD Test Structure



© ecx.io – an IBM Company 14

AssertJ
Fluent assertions for java



© ecx.io – an IBM Company 15

AssertJ
Fluent assertions for java



Unit Test Simplification







Mockito: mocking method call



Mockito: mocking method with different return values on consecutive calls



Mockito: using SPY



Mockito: using SPY



How close to 100% code coverage?
Successfully mocked objects!





Powermock: Mock System Classes



Powermock: Mock Static Methods



Powermock: Mock Constructor Call



© ecx.io – an IBM Company

Motivation: Constructor/method 

loads dll file or accesses network 

which makes code "untestable".

Supressing:

• constructor of a superclass / own constructor and 

instantiating a class

• Removing static initializer for the class

• specific method / field initialization



Powermock: Bypass Encapsulation



© ecx.io – an IBM Company

Motivation: automate common 

mocking tasks – Mock Policy

OOTB Mock Policy:

• @MockPolicy(Slf4jMockPolicy.class) – removes 

unnecessary logging, improves test/build 

performance and readability



Documentation Generation



Documentation created from JUnit?





© ecx.io – an IBM Company

Why JGiven?

 Java code using a fluent API
 JUnit or TestNG support
 Modular way of writing Scenarios
 Reports are generated for domain experts



© ecx.io – an IBM Company

JGiven

35



© ecx.io – an IBM Company

Stages Example

36



© ecx.io – an IBM Company

Scenario Example

37



Questions?
That’s it.


