
Real-Time Streaming
with Python ML Inference

Marko Topolnik

1

About Us

Hazelcast started in 2008 as a distributed cache

Today: main focus on real-time distributed stream processing

Our claim to fame is best-in-class latency

I co-authored the execution engine

2

Data Science: The Hype

Do Data Science Profit!

3

Data Science: The Truth

Do Data Science

Monitor

Profit
(fingers crossed)

4

Package

Load-Balance

Scale Up

Scale Out

Deploy

Re-Train

Example: Salary Prediction
Python, SciKit Learn, Random Forest

5

Training Data

{
 "age": 25,
 "workclass": "Self-emp",
 "fnlwgt": 176756,
 "education": "HS-grad",
 "education-num": 9,
 "marital-status": "Never-married",
 "occupation": "Farming-fishing",
 "relationship": "Own-child",
 "capital-gain": 0,
 "capital-loss": 0,
 "hours-per-week": 35,
 "native-country": "United-States"
 "income": "<=50K" -- train ML to predict this!
}

6

Sample Input and Output

Input: {
 "age": 25,
 "workclass": "Self-emp",
 "fnlwgt": 176756,
 "education": "HS-grad",
 "education-num": 9,
 "marital-status": "Never-married",
 "occupation": "Farming-fishing",
 "relationship": "Own-child",
 "capital-gain": 0,
 "capital-loss": 0,
 "hours-per-week": 35,
 "native-country": "United-States"
}

Output: {
 "probability": 0.85
 "income": "<=50K"
}

7

(Showing Project Directory)

8

We have a Web Service Doing ML!

9

Client

R
E
S
T

Productionizing the REST service

10

Request #1

Request #2

Request #3

R
E
S
T

Parallelism?

Productionizing the REST service

11

Request #1

Request #2

Request #3

REST

Load-Balancing?

REST

REST

Productionizing the REST service

12

Request #1

Request #2

Request #3

Batching?

Load
Balancer

REST

REST

REST

Effect of Batching on Throughput

13

Productionizing the REST service

14

Request #1

Request #2

Request #3

Load
Balancer

Request
Queue

Response
Queue

Batch

Batch
REST

REST

REST

Replace REST with Distributed Streaming

15

Request #1

Request #2

Request #3

Kafka
Hazelcast

Cluster

$ hz submit ML

Hazelcast Pipeline Code

Pipeline p = Pipeline.create();
p.readFrom(Kafka.source())
 .apply(mapUsingPython(new PythonServiceConfig()
 .setBaseDir("/Users/mtopol/dev/python/sklearn")
 .setHandlerModule("example_1_inference_jet")))
 .writeTo(Kafka.sink());

hz.newJob(p);

$ mvn package
$ hz submit target/my-job.jar

16

Jet Node 1

Pipeline Execution Plan

Source

mapUsing
Python

mapUsing
Python

Sink

17

Kafka Topic A

Python
process

Kafka Topic B

Batch
Python
process

Batch

Traditional Engine: Thread per Task

18

Hazelcast's Engine: Thread per CPU Core

19

Let's Start a Jet Cluster!

20

Cluster Elasticity and Resilience

● processing jobs are fault-tolerant
● nodes can join and leave the cluster, jobs go on
● automatically rescale to available hardware

21

Cluster Self-Formation

22

Hazelcast natively supports:

● Amazon AWS
● Google GCP
● Kubernetes

With simple configuration, the nodes self-discover in these
environments

Source and Sink Connectors

● Kafka
● Change Data Capture: MySQL, PostgreSQL, ...
● HTTP: WebSocket, Server-Sent Events
● Hadoop HDFS
● S3 bucket
● JDBC
● JMS queue and topic

23

Stream Operators

● windowed aggregation using Event Time
○ sliding, session window
○ count, sum, average, linear regression, ...
○ custom aggregate function

● rolling aggregation
● streaming join (co-grouping)
● hash join (enrichment)
● contact arbitrary external services

○ mapUsingPython uses this

24

Thanks for attending!

Q&A

marko@hazelcast.com
@mtopolnik

25

