
Programs without bugs
How we can write programs without any bugs?

Kristijan Šarić, EXACT BYTE

https://exact-byte.com/


Who am I?

● 15+ years of experience with programming (Java, Haskell, …) and the last 5+ years experience with 
AI/ML

● Products using NLP (entity recognition, sentiment analysis):
○ https://www.emprovio.com/
○ https://alenn.ai/
○ https://contetino.com/

● Mobile application for recognizing the sign language alphabet (for “deaf” people)
● Application for recognizing breast cancer
● Application for chest radiograph diagnosis (CheXpert, in progress, cooperation with a doctor)
● Non-medical:

○ Web application for detecting parking spaces, working on a small device (think Raspberry Pi)
○ Application for recognizing roads and road signs, "Mini Tesla" project on a small car
○ Application for automatic fault detection in automation

● https://exact-byte.com/en-blog/
● Haskell developer, Haskell squad lead at IOHK where a lot of (in)formal proof were done, not part 

of the formal specification group

https://www.emprovio.com/
https://alenn.ai/
https://contetino.com/
https://exact-byte.com/mobile-application-for-sign-language-recognition/
https://exact-byte.com/breast-cancer-detection-with-artificial-intelligence/
https://exact-byte.com/en-blog/


Why this presentation?

● A series of free applications/articles to promote myself and my company
● An opportunity to open up doors with somebody interested to cooperate



Where do I live?

● Pula, city in Croatia, on the coast, near Italy - https://en.wikipedia.org/wiki/Pula

https://en.wikipedia.org/wiki/Pula


Mobile application for recognizing the sign language 
alphabet (for deaf people)

Slika ruke 3d koordinate ruke A
https://youtu.be/7fXDFWrAA6Q

https://youtu.be/7fXDFWrAA6Q


Correct programs



How do we know our programs work correct(ly)?

1. Correct?



How do we know our programs work correct(ly)?

1. Correct?
2. I don’t have the time for it now.



How do we know our programs work correct(ly)?

1. Correct?
2. I don’t have the time for it now.
3. We close our eyes and wish really hard that it actually works.



How do we know our programs work correct(ly)?

1. Correct?
2. I don’t have the time for it now.
3. We close our eyes and wish really hard that it actually works.
4. We run it with a single input, it works with that, therefore, it must be correct.



How do we know our programs work correct(ly)?

1. Correct?
2. I don’t have the time for it now.
3. We close our eyes and wish really hard that it actually works.
4. We run it with a single input, it works with that, therefore, it must be correct.
5. We write a test that covers a single input, guaranteed it works correctly.



How do we know our programs work correct(ly)?

1. Correct?
2. I don’t have the time for it now.
3. We close our eyes and wish really hard that it actually works.
4. We run it with a single input, it works with that, therefore, it must be correct.
5. We write a test that covers a single input, guaranteed it works correctly.
6. We write a test that covers two inputs, absolutely works correctly.



How do we know our programs work correct(ly)?

1. Correct?
2. I don’t have the time for it now.
3. We close our eyes and wish really hard that it actually works.
4. We run it with a single input, it works with that, therefore, it must be correct.
5. We write a test that covers a single input, guaranteed it works correctly.
6. We write a test that covers two inputs, absolutely works correctly.
7. We write a test that covers multiple inputs and some border cases, this is the 

absolute truth.



How do we know our programs work correct(ly)?

1. Correct?
2. I don’t have the time for it now.
3. We close our eyes and wish really hard that it actually works.
4. We run it with a single input, it works with that, therefore, it must be correct.
5. We write a test that covers a single input, guaranteed it works correctly.
6. We write a test that covers two inputs, absolutely works correctly.
7. We write a test that covers multiple inputs and some border cases, this is the 

absolute truth.
8. THE ABYSS



How do we know our programs work correct(ly)?

1. Correct?
2. I don’t have the time for it now.
3. We close our eyes and wish really hard that it actually works.
4. We run it with a single input, it works with that, therefore, it must be correct.
5. We write a test that covers a single input, guaranteed it works correctly.
6. We write a test that covers two inputs, absolutely works correctly.
7. We write a test that covers multiple inputs and some border cases, this is the 

absolute truth.
8. THE ABYSS
9. We have tests that are auto-generated and check if our invariants hold.



How do we know our programs work correct(ly)?

1. Correct?
2. I don’t have the time for it now.
3. We close our eyes and wish really hard that it actually works.
4. We run it with a single input, it works with that, therefore, it must be correct.
5. We write a test that covers a single input, guaranteed it works correctly.
6. We write a test that covers two inputs, absolutely works correctly.
7. We write a test that covers multiple inputs and some border cases, this is the 

absolute truth.
8. THE ABYSS
9. We have tests that are auto-generated and check if our invariants hold.

10. We have state machine tests that cover all the important states of the program.



How do we know our programs work correct(ly)?

1. Correct?
2. I don’t have the time for it now.
3. We close our eyes and wish really hard that it actually works.
4. We run it with a single input, it works with that, therefore, it must be correct.
5. We write a test that covers a single input, guaranteed it works correctly.
6. We write a test that covers two inputs, absolutely works correctly.
7. We write a test that covers multiple inputs and some border cases, this is the absolute 

truth.
8. THE ABYSS
9. We have tests that are auto-generated and check if our invariants hold.

10. We have state machine tests that cover all the important states of the program.
11. We have a formal specification of the program that includes all of the above.



How do we know our programs work correct(ly)?

1. Correct?
2. I don’t have the time for it now.
3. We close our eyes and wish really hard that it actually works.
4. We run it with a single input, it works with that, therefore, it must be correct.
5. We write a test that covers a single input, guaranteed it works correctly.
6. We write a test that covers two inputs, absolutely works correctly.
7. We write a test that covers multiple inputs and some border cases, this is the absolute 

truth.
8. THE ABYSS
9. We have tests that are auto-generated and check if our invariants hold.

10. We have state machine tests that cover all the important states of the program.
11. We have a formal specification of the program that includes all of the above.
12. We have a formal verification of the program that covers 100% of all cases (used only in 

critical applications) - the specification adheres to the program, they are equal



Formal specification

● https://en.m.wikipedia.org/wiki/Formal_specification

https://en.m.wikipedia.org/wiki/Formal_specification


Formal specification

● https://en.m.wikipedia.org/wiki/Formal_specification
● In computer science, formal specifications are mathematically based 

techniques whose purpose are to help with the implementation of systems 
and software. They are used to describe a system, to analyze its behavior, 
and to aid in its design by verifying key properties of interest through rigorous 
and effective reasoning tools.[1][2] These specifications are formal in the 
sense that they have a syntax, their semantics fall within one domain, and 
they are able to be used to infer useful information.[3]

https://en.m.wikipedia.org/wiki/Formal_specification


Formal specification

● Formal (form, shape)
● Specification (specifying something)
● Let’s take an example!



Example

Missing example/slides about Coq and formal proofs. It would make things more 
confusing.



Example

● Why Haskell?



Example

● Why Haskell?
● An interesting programming language where a lot of ideas (research) is “put 

into production” (tested)



Example

● Why Haskell?
● An interesting programming language where a lot of ideas (research) is “put 

into production” (tested)
● The story about dependently typed Haskell is a loong one…



Example

● Why Haskell?
● An interesting programming language where a lot of ideas (research) is “put 

into production” (tested)
● The story about dependently typed Haskell is a loong one…
● Pure functional language



Example

● https://github.com/input-output-hk/cardano-shell
● Launcher, the program that starts up the crypto “wallet” frontend and the node 

backend and worries about updates
● There were tons of bugs with the existing program, there are a lot of details that can 

mess up the actual flow of the program
● After I made the specification (for the possible states and how the program behaves 

in them) I added the tests that would make sure that the program does exactly that
● https://github.com/input-output-hk/cardano-shell/tree/master/cardano-launcher

https://github.com/input-output-hk/cardano-shell
https://github.com/input-output-hk/cardano-shell/tree/master/cardano-launcher


Example

Launcher

Node (Backend)Frontend

Updates, Safe 
mode, …



Example

● https://github.com/input-output-hk/cardano-shell/tre
e/master/cardano-launcher

https://github.com/input-output-hk/cardano-shell/tree/master/cardano-launcher
https://github.com/input-output-hk/cardano-shell/tree/master/cardano-launcher


Model

● The (simplest) pure representation of the actual program
● You can reiterate and add complexity
● Pure, simplified, is math - in this case let’s limit ourselves to mapping:

○ IF True THEN ‘A’ ELSE ‘B’
○ { True => ‘A’, False => ‘B’}

● We have lists, structures, data, but only pure values and mapping
● What would be the simplest model for our problem?



(Finite) State Machine



TLA+

● https://en.wikipedia.org/wiki/Modal_logic
● Language for specifying programs
● There are limits, for those who are interested doing something more rigorous try Isabelle or 

Coq
● https://en.wikipedia.org/wiki/Model_checking
● https://github.com/input-output-hk/cardano-shell/blob/master/cardano-shell/specs/tla/Up

dateSystemWallet.tla
● https://github.com/input-output-hk/cardano-shell/blob/master/cardano-launcher/test/Lau

ncherSMSpec.hs
●

https://en.wikipedia.org/wiki/Modal_logic
https://en.wikipedia.org/wiki/Model_checking
https://github.com/input-output-hk/cardano-shell/blob/master/cardano-shell/specs/tla/UpdateSystemWallet.tla
https://github.com/input-output-hk/cardano-shell/blob/master/cardano-shell/specs/tla/UpdateSystemWallet.tla
https://github.com/input-output-hk/cardano-shell/blob/master/cardano-launcher/test/LauncherSMSpec.hs
https://github.com/input-output-hk/cardano-shell/blob/master/cardano-launcher/test/LauncherSMSpec.hs


That’s all folks

● It’s useful to know what your program needs to do before coding
● Specification is very useful when used in critical parts of the code
● When you think about not only your program, but about how to prove your 

program correct, you will understand more about your code than before
● Thanks for your time
● Resources:

○ https://softwarefoundations.cis.upenn.edu/
○ “FORMALNI DOKAZI U PROGRAMIRANJU”, Kristijan Šarić, 2016.

● Questions?

https://softwarefoundations.cis.upenn.edu/

