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Who am I?

● 15+ years of experience with programming (Java, Haskell, …) and the last 5+ years experience with 
AI/ML

● Products using NLP (entity recognition, sentiment analysis):
○ https://www.emprovio.com/
○ https://alenn.ai/
○ https://contetino.com/

● Mobile application for recognizing the sign language alphabet (for “deaf” people)
● Application for recognizing breast cancer
● Application for chest radiograph diagnosis (CheXpert, in progress, cooperation with a doctor)
● Non-medical:

○ Web application for detecting parking spaces, working on a small device (think Raspberry Pi)
○ Application for recognizing roads and road signs, "Mini Tesla" project on a small car
○ Application for automatic fault detection in automation

● https://exact-byte.com/en-blog/
● Haskell developer, Haskell squad lead at IOHK where a lot of (in)formal proof were done, not part 

of the formal specification group

https://www.emprovio.com/
https://alenn.ai/
https://contetino.com/
https://exact-byte.com/mobile-application-for-sign-language-recognition/
https://exact-byte.com/breast-cancer-detection-with-artificial-intelligence/
https://exact-byte.com/en-blog/


Why this presentation?

● A series of free applications/articles to promote myself and my company
● An opportunity to open up doors with somebody interested to cooperate



Where do I live?

● Pula, city in Croatia, on the coast, near Italy - https://en.wikipedia.org/wiki/Pula

https://en.wikipedia.org/wiki/Pula


Mobile application for recognizing the sign language 
alphabet (for deaf people)

Slika ruke 3d koordinate ruke A
https://youtu.be/7fXDFWrAA6Q

https://youtu.be/7fXDFWrAA6Q
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10. We have state machine tests that cover all the important states of the program.
11. We have a formal specification of the program that includes all of the above.
12. We have a formal verification of the program that covers 100% of all cases (used only in 

critical applications) - the specification adheres to the program, they are equal
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Formal specification

● https://en.m.wikipedia.org/wiki/Formal_specification
● In computer science, formal specifications are mathematically based 

techniques whose purpose are to help with the implementation of systems 
and software. They are used to describe a system, to analyze its behavior, 
and to aid in its design by verifying key properties of interest through rigorous 
and effective reasoning tools.[1][2] These specifications are formal in the 
sense that they have a syntax, their semantics fall within one domain, and 
they are able to be used to infer useful information.[3]

https://en.m.wikipedia.org/wiki/Formal_specification


Formal specification

● Formal (form, shape)
● Specification (specifying something)
● Let’s take an example!



Example

Missing example/slides about Coq and formal proofs. It would make things more 
confusing.
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● Why Haskell?
● An interesting programming language where a lot of ideas (research) is “put 

into production” (tested)
● The story about dependently typed Haskell is a loong one…
● Pure functional language



Example

● https://github.com/input-output-hk/cardano-shell
● Launcher, the program that starts up the crypto “wallet” frontend and the node 

backend and worries about updates
● There were tons of bugs with the existing program, there are a lot of details that can 

mess up the actual flow of the program
● After I made the specification (for the possible states and how the program behaves 

in them) I added the tests that would make sure that the program does exactly that
● https://github.com/input-output-hk/cardano-shell/tree/master/cardano-launcher

https://github.com/input-output-hk/cardano-shell
https://github.com/input-output-hk/cardano-shell/tree/master/cardano-launcher


Example

Launcher

Node (Backend)Frontend

Updates, Safe 
mode, …



Example

● https://github.com/input-output-hk/cardano-shell/tre
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https://github.com/input-output-hk/cardano-shell/tree/master/cardano-launcher
https://github.com/input-output-hk/cardano-shell/tree/master/cardano-launcher


Model

● The (simplest) pure representation of the actual program
● You can reiterate and add complexity
● Pure, simplified, is math - in this case let’s limit ourselves to mapping:

○ IF True THEN ‘A’ ELSE ‘B’
○ { True => ‘A’, False => ‘B’}

● We have lists, structures, data, but only pure values and mapping
● What would be the simplest model for our problem?



(Finite) State Machine



TLA+

● https://en.wikipedia.org/wiki/Modal_logic
● Language for specifying programs
● There are limits, for those who are interested doing something more rigorous try Isabelle or 

Coq
● https://en.wikipedia.org/wiki/Model_checking
● https://github.com/input-output-hk/cardano-shell/blob/master/cardano-shell/specs/tla/Up

dateSystemWallet.tla
● https://github.com/input-output-hk/cardano-shell/blob/master/cardano-launcher/test/Lau

ncherSMSpec.hs
●

https://en.wikipedia.org/wiki/Modal_logic
https://en.wikipedia.org/wiki/Model_checking
https://github.com/input-output-hk/cardano-shell/blob/master/cardano-shell/specs/tla/UpdateSystemWallet.tla
https://github.com/input-output-hk/cardano-shell/blob/master/cardano-shell/specs/tla/UpdateSystemWallet.tla
https://github.com/input-output-hk/cardano-shell/blob/master/cardano-launcher/test/LauncherSMSpec.hs
https://github.com/input-output-hk/cardano-shell/blob/master/cardano-launcher/test/LauncherSMSpec.hs


That’s all folks

● It’s useful to know what your program needs to do before coding
● Specification is very useful when used in critical parts of the code
● When you think about not only your program, but about how to prove your 

program correct, you will understand more about your code than before
● Thanks for your time
● Resources:

○ https://softwarefoundations.cis.upenn.edu/
○ “FORMALNI DOKAZI U PROGRAMIRANJU”, Kristijan Šarić, 2016.

● Questions?

https://softwarefoundations.cis.upenn.edu/

