
Spring GraphQL
@maciejwalkowiak

Web Applications < 2010

Enterprise Applications < 2010

Mobile Apps > 2007

Angular & SPA > 2011

Angular & SPA > 2011

Different Clients - Different Needs
browser displays more data and more types of data - payload size is not a huge issue

mobile client displays small amount of data - small payload size is critical for UX

Web: Mobile:

GET /books
[
 {
 "id": 122,
 "title": "Modern Java",
 "publicationYear": 2021,
 "coverUrl": "https://...",
 "authorId": 344,
 "description": "... long description text ..."
 },
 ...
]

GET /books
[
 {
 "id": 122,
 "title": "Modern Java",
 "publicationYear": 2021,
 "coverUrl": "https://...",
 "authorId": 344
 },
 ...
]

Data Composition
client is responsible for data composition

multiple requests sent from client (potential N+1 problem)

Fetch books: Fetch authors:

GET /books
[
 {
 "id": 122,
 "title": "Modern Java",
 "publicationYear": 2021,
 "coverUrl": "https://...",
 "authorId": 344,
 },
 {
 "id": 123,
 "title": "Spring in Action",
 "publicationYear": 2020,
 "coverUrl": "https://...",
 "authorId": 345,
 }
]

GET /authors/344
{
 "id": 344,
 "name": "John Smith",
 "avatarUrl": "https://..."
}

GET /authors/345
{
 "id": 344,
 "name": "John Smith",
 "avatarUrl": "https://..."
}

Problem with REST(ish) APIs
REST is an architecture style

no spec - just principles

dif�cult to get "right"

overfetching

expensive data composition

no schema

hypermedia isn’t what developers want

This is not a REST critique

Also, look at https://jsonapi.org/.

https://jsonapi.org/

Hello GraphQL
Forget everything you know about REST

Ignore HTTP methods, status codes, caching

A query language for your API GraphQL is a query

language for APIs and a runtime for ful�lling those

queries with your existing data. GraphQL provides a

complete and understandable description of the data in

your API, gives clients the power to ask for exactly what

they need and nothing more, makes it easier to evolve

APIs over time, and enables powerful developer tools.

GraphQL
Schema: Query:

Results:

type Query {
 findAuthors: [Author]
 author(id: ID!): Author
}

type Author {
 id: ID!
 name: String!
 age: Int
 books: [Book]
}

type Book {
 id: ID!
 title: String!
 author: Author!
 publicationYear: Int
}

query {
 findAuthors {
 id
 name
 books {
 title
 }
 }
}

{
 "data": {
 "findAuthors": [
 {
 "id": "1",
 "name": "maciej",
 "books": [
 {
 "title": "book 1"
 },

DEMO

We have just scratched the surface

Challenges
microservies & single /graphql endpoint?

caching?

database transactions?

` `

Continue Learning
https://www.graphql-java.com/

https://spring.io/projects/spring-graphql

https://www.howtographql.com/

https://youtube.com/springacademy <-- that’s me

follow @maciejwalkowiak on twitter

https://www.graphql-java.com/
https://spring.io/projects/spring-graphql
https://www.howtographql.com/
https://youtube.com/springacademy

Thank you!

