Open@

The Next Frontier in
Open Source Java Compilers:

Just-In-Time Compilation as a Service

Open@

Rich Hagarty

IBM Developer Advocate

rich.hagarty@ibm.com
@rhagarty8
https://www.linkedin.com/in/rhagarty/

Agenda

 JVM and JIT

* JIT-as-a-Service

* JITServer from Eclipse Openl9
* Experiment results

* Demo

e Usage and recommendations

J9

Open@

JVM primer

JVM Interpreter J9

Java Bytecode
 Java programs are converted into bytecode t

by the javac compiler

* Machine independent bytecodes are
interpreted by the JVM at runtime

Class Loader

)

across different architectures

* But it affects performance because
interpretation is relatively slow

|
|
|
|
|
|
|
|
Bytecode Verifier |
|
|
|
|
|
|
|
|
|

* This ensures portability of Java programs i

Hardware

Just-in-Time Compiler J9

e Performance is helped by the JIT compiler, which Java Bytecode
transforms sequences of bytecodes into optimized 1 _________
machine code t VM

Class Loader

)

e Unit of compilation is a typically a method. To i
Bytecode Verifier :

save overhead, only “hot” methods are compiled

* Compiled native machine code executes ~10x |

faster than a bytecode-by-bytecode interpreter l
 Generated code is saved in a "code cache" for Interpreter
future use for lifetime ofJy@ —/— i _____________ |
OS

Hardware

JIT advantages over static compilers J9

JIT compilation is performed at runtime, while the Java
application is running. The has advantages over static compilers:

* JIT can optimize generated code for the machine they are
running on

e JIT can tailor-fit code to the application that is executed and to

the input that is provided. This is done through runtime
profiling

Open@

JIT Compilation disadvantages

JIT disadvantages

* JIT compilers requires CPU and memory at runtime,
which interferes with the running Java application

* Affects application startup/ramp-up and QoS
* Most JIT compilations occur during this phase

* Worse on small containers/VMs where resources are
limited

10

J9

o

"\~ ol

JIT - CPU usage J9

JIT compilation creates spikes in CPU usage. Daytrader7 CPU consumption

400

350 CPU spikes caused
by JIT compilation

2

* Can slow application start-up/ramp-up

250

* Can create hiccups in Java applications and
lower QoS

CPU utilization (%)
N
8

150

g

vl
o

o

0 30 60 90

Time (sec)

11 ¢$@

JIT - memory footprint

JIT compilation creates spikes in memory usage

* These can create OOM events resulting in
crashes, lower availability or lower QoS

* A way to avoid OOM is to overprovision for the
peak memory consumption — resulting in
higher costs

e Determining the amount to overprovision is
hard — JVMs have a non-deterministic behavior

12

Resident set size (KB)

600000

500000

B
8
S]
S}

300000

g
g
o

100000

Daytrader7 memory footprint

/

Footprint spikes caused
by JIT compilation

30 60
Time (sec)

90

J9

Open@

A Solution — JIT-as-a-Service

JIT-as-a-Service Open@

Decouple the JIT compiler from the JVM and let it run as an independent process

. -——————————————————-:
1

&=
Offload JIT
compilation to

&=

VM
remote process i
| docker
/Kubernetes\
Control Plane E Remote
| JT
VM

Treat JIT
compilation as a
cloud service

* Auto-managed by orchestrator
* A mono-to-micro solution

e Local JIT still available
14 $$@

Open@

JITServer from the Eclipse Openl9 JVM

Eclipse OpendJ9

* JITServer feature is available in the Eclipse Openl9 JVM
* Branded name is “Semeru Cloud Compiler”

* Openl)9 combines with OpenJDK to form a full JDK

Link to GitHub repo: https://github.com/eclipse-openj9/openij9

17

J9

https://github.com/eclipse-openj9/openj9

Overview of Eclipse OpenJ9

18

J9

Designed from the start to span all the operating
systems needed by IBM products

This JVM can go from small to large

Can handle constrained environments or memory
rich ones

Renowned for its small footprint, fast start-up and
ramp-up time

Is used by the largest enterprises on the planet

Eclipse OpenJ9 Performance OperiJ9)

50% smaller footprint after Faster ramp-up time in the 33% smaller footprint during

startup cloud load
1.0 400 200

51% faster startup time

Throughput (pages/s)
Resident Set Size (MB)

0

®
N

‘é’ »
R o
1 @
= »
a0

g =
= @
e o
L [}
- o
o= ®
o =
=

P ©
@

o

|

l

0 200 400
Time (s)

HotSpot OpenJ9 HotSpot

By using shared classes cache and , Opend9 reaches peak throughput Consistent with the footprint results
. After startup, the OpendJ9 footprint . .
AOT technology, OpendJ9 starts in . .) much faster than HotSpot making it after startup, the OpenJ9 footprint
L is half the size of HotSpot, which _ _ . ,
roughly half the time it takes L especially suitable for running remains much smaller than HotSpot
makes it ideal for cloud workloads. . — : :
HotSpot. short-lived applications. when load is applied.

19

Open@

IBM Semeru Runtimes

IBM Semeru Runtimes J9

IBM-built OpenJDK runtimes powered by the Eclipse Openl9 JVM

No cost, stable, secure, high performance, cloud optimized, multi-
platform, ready for development and production use

Open Edition
“The part of Java that’s really in the clouds” 4 Open source Iicense (GPLV2+CE)
e Available forJava 8, 11, 17, 18 (soon 19)

Certified Edition

* |IBM license

e Java SE TCK certified.

* Available for Java 11, 17

21

IBM Semeru Runtimes J9

All supported architectures for both Open and Certified Editions are available at:
https://ibm.biz/GetSemeru

DockerHub official images (Open Edition only):
https://hub.docker.com/ /ibm-semeru-runtimes

IBM container registry:
icr.io/appcafe/ibm-semeru-runtimes:{open/certified}-{8/11/17/18}-{jdk/jre}-{ubi/ubi-minimal}

Red Hat Registry:
https://catalog.redhat.com/software/containers/search?g=semeru

22

https://ibm.biz/GetSemeru
https://hub.docker.com/_/ibm-semeru-runtimes
https://catalog-redhat.com/software/containers/search?q=semeru

Adoptium Marketplace (Certified Edition) J9

Q ADOPTIUM Home Marketplace Documentation FAQ ~ Further Information ~

Java™ is the world's leading programming language and platform. The Adoptium
Marketplace promotes high-quality, TCK certified and AQAvit verified runtimes for
use across the Java ecosystem.

adoptium.net/marketplace | Adoptium® Marketplace

The AQAvit open source test suite (Adoptium Quality

Assurance) can be found here. There is also a blog

post and brief presentation that explains what testing is
A Q A v l T run and how it fits into the overall delivery pipeline.

by ADOPTIUM

¥ o

- - Alibaba Cloud
HUAWEI

AQE 2

Operating System Architecture Package Type Version
Any v Any v Any v 17 v

Operating

Build Version Distribution Vendor System Architecture Download

jdk-17.0.4.1+1_openj9-
0.331 Semeru
JDK Runtimes

Checksum
(SHA256)

Linux aarch64

jdk-17.0.4.1+1_openj9-
0.331 Semeru
JDK Runtimes

el & o
i 3 targz
Aix ppc64 (SHA256), & targ:

23 :%’@

Open@

Openl9 JITServer Technology

JITServer Advantages for JVM Clients J9

PROVISIONING PERFORMANCE RESILIENCY
* Less memory required * More predictable —JIT If the JITServer crgashes,
—no local JIT no longer steals CPU the JVM can continue to
compilation spikes cycles from the app Irun ?Jn# compile with its
oca
* Easier to size —only * Improved ramp-up
consider needs of time due to JITServer
application supplying extra CPU

power when the JVM
needs it the most

* Improved ramp-up
most notable in
performance of short-
lived apps

25 % 9%

JITServer — natural fit for the cloud J9

26

JITServer performs better in constrained environments

Smaller containers increase application density and thus, reduce
operational costs

JITServer can be easily containerized and deployed to Kubernetes,

OpenShift, etc., which makes it easier to run Java applications in
densely packed cloud environments

Use of server-side caching can lead to better cluster-wide CPU
utilization

Improved ramp-up time improves auto-scaling behavior
JITServer can be scaled to match demand

. ImY
Yor . AWE
&“"K\ffvﬂ?f:‘\&

™

JITServer Technology availability J9

* Available on
* Linux on x86-64 (GA'd with OpenlJ9 release 0.29.0, Oct. 2021)
* Linux on Power (GA'd with Openl9 release 0.29.0, Oct. 2021)
* Linux on zSystems (GA’d with Openl9 release 0.32.0, Apr. 2022)

* Supported Java: Java8, Javall, Javal7

* Works on bare metal, in containers, on virtual machines, and in
the cloud

* Dependencies: openssl| dll, but only if using encryption

27

Open@

Performance graphs

Improve VM costs in Amazon EC2 with JITServer Open@

Goal to minimize cost = Use t3.nano VM with 0.5 GB
e ~200 MB needed by OS =2 300 MB left for AcmeAir container

= JITServer can double the throughput of vanilla OpenlJ9

Instance type Memory (GiB) Price (Linux)

t3.nano S0.0052/hour
t3.micro 2 1.0 S0.0104/hour

Goal to improve throughput =» Vanilla OpenJ9 must move up to
a t3.micro VM

=>» JITServer achieves same throughput for half the cost

29

AcmeAir throughput
t3.nano VM (2 vCPUs, 0.5 GB)

5000
4000
3000
2000 ~
1000

0
0 50 100 150 200 250 300

Time (sec)

Throughput (pages/sec)

e]|TServer e===Q0penl9

AcmeAir throughput

5000
4000
3000
2000
1000
0 /

0 50 100 150 200 250 300

Time (sec)

0.5 GB

Throughput (pages/sec)

e]|TServer-t3.nan0 e===Q0Openl9-t3.micro

:%@

JITServer value in Kubernetes J9

* https://blog.openj9.org/2021/10/20/save-money-with-jitserver-on-the-
cloud-an-aws-experiment/

* Experimental test bed
 ROSA (RedHat OpenShift Service on AWS)
* Demonstrate that JITServer is not tied to IBM HW or SW
 OCP cluster: 3 master nodes, 2 infra nodes, 3 worker nodes
* Worker nodes have 8 vCPUs and 16 GB RAM (only ~12.3 GB available)
* Four different applications
* AcmeAir Microservices
* AcmeAir Monolithic
* Petclinic (Springboot framework)
* Quarkus
* Low amount of load to simulate conditions seen in practice

OpenShift Scheduler to manage pod and node deployments/placement

30 xéx@@

https://blog.openj9.org/2021/10/20/save-money-with-jitserver-on-the-cloud-an-aws-experiment/

JITServer improves container density and cost 19

Total=8250 MB

P 450

P 450

P 450

Q350
Q350

Total=8550 MB

Total=8600 MB

Default config

Total=9250 MB

Total=9850 MB

JITServer config

Legend:
A: Auth service

C: Customer service

D: Database (mongo/postgres)
F: Flight service

J: JITServer

M: Main service

P: Petclinic

Q: Quarkus

6.3 GB less %

Throughput comparison Oper{J9)

1200 1200
glOOO glooo
= =
gJD 800 % 800
8 coo AcmeAir Microservices 2 AcmeAir Monolithic
2 2
5 400 ® 400
S >S5
o o
rE 200 |4_: 200

0 240 480 720 960 1200 1440 1680 1920 0 240 480 720 960 1200 1440 1680 1920
Time (sec) Time (sec)
I JiTServer [Baseline Machine load:
0

w0 se00 17.5% from apps
(8] .
o T 3000 7% from OpenShift
wv wv)
& 120 @ 2500
s Qo
2100 L &
= e Petclinic %2000 Quarkus
£ 60 3 1500
S 40 0
5 % 1000
< 20 o
T oo £ 500

0 240 480 720 960 1200 1440 1680 1920 0

Time (sec) 0 240 48 720 960 1200 1440 1680 1920
Time (sec)

=>» JITServer and default configuration achieve the same level of throughput at steady-state

32 %

Conclusions from high density experiments J9

* JITServer can improve container density and reduce operational costs
of Java applications running in the cloud by 20-30%

 Steady-state throughput is the same despite using fewer nodes

33 xa,@@

Autoscaling in Kubernetes Open@

AcmeAir throughput when using Kubernetes autoscaling

9000 Setup:

2000 Single node Microk8s cluster (16 vCPUs, 16 GB RAM)
o ™ JVMs limited to 1 CPU, 500MB
S oo JITServer limited to 8 CPUs and has AOT cache enabled
%Smo Load applied with JMeter, 100 threads, 10 ms think-time,
£ i 60s ramp-up time
%3000
£ 2000 Autoscaler: scales up when average CPU utilization

1000 exceeds 0.5P. Up to 15 AcmeAir instances

0 60 120 180 240 300 360 420 480

Time (sec)

e==Baseline e==)|TServer+AOTcache

* Better autoscaling behavior with JITServer due to faster ramp-up
* Less risk to fool the HPA due to transient JIT compilation overhead

34 %{@

Open@

Demo

Demo - Improve ramp-up time with JiITServer Open@

e Experiment in docker containers
e Show that JITServer improves ramp-up
e Show that JITServer allows a lower memory limit for JVM containers

OpenlLiberty+
AcmeAir
1P, 400 MB
limit

Provide data
persistence
services

OpenlLiberty+
AcmeAir MongoDB
1P, 200 MB
limit

Grafana InfluxDB JMeter

Display throughput Collect throughput
data data from JMeter OpenLiberty+
AcmeAir JITServer
JMet
eter 1P, 200 MB 4P, 1GB limit Prometheus Grafana
limit

Provide JIT Scrap Display
Apply '°a?' Run the AcmeAir compilation metrics JITServer

tg AcmeAir application services metrics

instances

36 %

Open@

How to use it

JITServer usage basics J9

* One JDK, three different personas
* Normal JVM: SJAVA_HOME/bin/java MyApp
* JITServer: SJAVA_HOME/bin/jitserver
e Client JVM: SJAVA_HOME/bin/java -XX:+Usel|TServer MyApp

e Optional further configuration through JVM command line options
e At the server:

-XX:JITServerPort=... default: 38400

e At the client:
-XX:JITServerAddress=... default: ‘localhost’
-XX:JITServerPort=... default: 38400

* Full list of options: https://www.eclipse.org/openj9/docs/jitserver/

* Note: Java version and OpenlJ9 release at client and server must match

38 %r

https://www.eclipse.org/openj9/docs/jitserver/

JITServer usage in Kubernetes

 Typically we create/configure
* JITServer deployment
 JITServer service (clients interact with service)

* Use
* Yaml files
* Helm charts
e Operators (under development)

* Tutorial: https://developer.ibm.com/tutorials/using-openj9-jitserver-in-

kubernetes/

39

J9

https://developer.ibm.com/tutorials/using-openj9-jitserver-in-kubernetes/

JITServer Helm Chart J9

* How-to
* Install repo

* helm repo add openj9 https://raw.githubusercontent.com/eclipse/openj9-utils/master/helm-chart/
Deploy JITServer chart

* helm install SomeName openj9/openj9-jitserver-chart
This will instantiate a “deployment” and a “service”
Further configuration can be done with arguments given at ‘helm install’ time

--set image.tag="“"MyTag”

--set image.repository= “MyRepo”

--set service.port=“MyPort”
Passing additional options to JITServer

E.g.: --set env[0].name="0OPENJ9_JAVA_ OPTIONS" --set env[0].value="-XX:+JITServerLogConnections”

* Blog post: https://blog.openj9.org/2021/03/20/introducing-the-eclipse-openj9-
jitserver-helm-chart/

40 1&@@

https://raw.githubusercontent.com/eclipse/openj9-utils/master/helm-chart/
https://blog.openj9.org/2021/03/20/introducing-the-eclipse-openj9-jitserver-helm-chart/

JITServer traffic encryption through TLS J9

* Needs additional JVM options
* Server: -XX:JITServerSSLKey=key.pem -XX:JITServerSSLCert=cert.pem
* Client: -XX:JITServerSSLRootCerts=cert.pem

* Certificate and keys can be provided using Kubernetes TLS Secrets

41

* Create TLS secret:

» kubectl create secret tls my-tls-secret --key <private-key-filename> --cert <certificate-filename>

* Use a volume to map “pem” files

apiVersion: vl
kind: Pod
metadata:
name: my-pod
spec:
containers:

- name: my-container-name
image: my-image
volumeMounts:

- name: secret-volume
mountPath: /etc/secret-volume
volumes:

- name: secret-volume
secret:

secretName: my-tls-secret

Monitoring

e Support for custom metrics for Prometheus
* Metrics scrapping: GET request to http://<jitserveraddress>:<port>/metrics

 Command line options:
-XX:+JITServerMetrics -XX:JITServerMetricsPort=<port>
* Metrics available
 jitserver_cpu_utilization
e jitserver_available_memory
e jitserver_connected clients
 jitserver_active_threads

* Verbose logging
* Print client/server connections
-XX:+JITServerLogConnections
* Heart-beat: periodically print to verbose log some JITServer stats
e -Xjit:statisticsFrequency=<period-in-ms>
e Print detailed information about client/server behavior
-Xjit:verbose={JITServer},verbose={compilePerformance},vlog=...

42

J9

JITServer usage recommendations J9

* When to use it
* JVM needs to compile many methods in a relatively short time

e JVM is running in a CPU/memory constrained environment, which can worsen interference from
the JIT compiler

* The network latency between JITServer and client VM is relatively low (<1ms)
» To keep network latency low, use “latency-performance” profile for tuned and configure your VM with SR-IOV

« Recommendations
* 10-20 client JVMs connected to a single JITServer instance
e JITServer needs 1-2 GB of RAM
* In K8s set vCPU “limits” much larger than “requests” to allow for CPU usage spikes
» Better performance if the compilation phases from different JVM clients do not overlap (stagger)
* Encryption adds to the communication overhead; avoid if possible
* In K8s use “sessionAffinity” to ensure a client always connects to the same server

* Enable JITServer AOT cache: -XX:+JITServerUseAOTCache (client needs to have shared class cache
enabled)

43 mﬁ@

Open@

Conclusions

Final thoughts J9

* JIT provides advantage, but compilation adds overhead
* Disaggregate JIT from JVM = JIT compilation as a service

* Eclipse Openl9 JITServer (a.k.a Semeru Cloud Compiler)
* Available now on Linux for Java 8, Java 11 and Java 17 (IBM Semeru Runtimes)
* Retain benefit of JIT optimization. Advantage increases with life of app
* Especially good for constrained environments (micro-containers)
e Kubernetes ready (Helm chart available, Prometheus integration)
e Can improve ramp-up, autoscaling and performance of short lived applications

* Can reduce peak memory footprint, increase app density and reduce operational
costs

48

Resources

* Blogs
* JITServer - Optimize your Java cloud-native applications
* Using Openl9 JITServer in Kubernetes
* Connect a Kubernetes Open Liberty app to OpenlJ9 JITServer
* Exploring JITServer on the new Linux on IBM z16 Platform
* Save Money with JITServer on the Cloud — an AWS Experiment
* Introducing the Eclipse OpenlJ9 JITServer Helm Chart
* A glimpse into performance of JITServer technology
* Free your JVM from the JIT with JITServer technology

* Presentations
* Live Demo at Oracle Code One 2018: https://youtu.be/GmP7HBzog9Q?t=1169
* Demo setup: https://github.com/mstoodle/openj9-jitaas-demo
* CASCON 2018: https://www.youtube.com/watch?v=3gKplQgy3zo
* SPLASH 2018: https://www.slideshare.net/MarkStoodley/turbo2018-workshop-jit-as-a-service
e FOSDEM 2019: http://bofh.nikhef.nl/events/FOSDEM/2019/H.1302/jit cloud.mp4

e USENIX ATC 2022 paper: “JITServer: Disaggregated Caching JIT Compiler for the JVM in the Cloud”
* https://www.usenix.org/system/files/atc22-khrabrov.pdf

* Documentation: https://www.eclipse.org/openj9/docs/jitserver/

49

Open@

https://developer.ibm.com/articles/jitserver-optimize-your-java-cloud-native-applications/
https://developer.ibm.com/tutorials/using-openj9-jitserver-in-kubernetes/
https://developer.ibm.com/tutorials/connect-a-kubernetes-open-liberty-app-to-openj9-jitserver/
https://blog.openj9.org/2022/05/25/exploring-jitserver-on-the-new-linux-on-ibm-z16-platform/
https://blog.openj9.org/2021/10/20/save-money-with-jitserver-on-the-cloud-an-aws-experiment/
https://blog.openj9.org/2021/03/20/introducing-the-eclipse-openj9-jitserver-helm-chart/
https://blog.openj9.org/2020/02/11/a-glimpse-into-performance-of-jitserver-technology/
https://blog.openj9.org/2020/01/09/free-your-jvm-from-the-jit-with-jitserver-technology/
https://youtu.be/GmP7HBzog9Q?t=1169
https://github.com/mstoodle/openj9-jitaas-demo
https://www.youtube.com/watch?v=3gKplQqy3zo
https://www.slideshare.net/MarkStoodley/turbo2018-workshop-jit-as-a-service
http://bofh.nikhef.nl/events/FOSDEM/2019/H.1302/jit_cloud.mp4
https://www.usenix.org/system/files/atc22-khrabrov.pdf
https://www.eclipse.org/openj9/docs/jitserver/

Open@

Thank You!
Questions?
rich.hagarty@ibm.com

@rhagarty8
https://www.linkedin.com/in/rhagarty/

