
@nicolas_frankel

A CDC use-case:
Designing an Evergreen
Cache
Nicolas Fränkel

@nicolas_frankel

Me, myself and I

✦Developer

✦Developer advocate

@nicolas_frankel

Our agenda

1. Why cache?

2. Alternatives to keeping the
cache in sync

3. Change-Data-Capture (CDC)

4. Debezium

5. Hazelcast + Debezium

6. Demo!

@nicolas_frankel

The caching trade-off

✦ Improve:
• Performance
• Availability

✦Stale data

@nicolas_frankel

The initial state

@nicolas_frankel

Aye, there’s the rub

✦A new component writes to
the database
• e.g. a table holding references

needs to be updated every now
and then

@nicolas_frankel

How to keep the cache in sync with the DB?

@nicolas_frankel

Cache invalidation

“There are two hard things in
computer science:

1. Naming things

2. Cache invalidation

3. And off-by-one errors”

@nicolas_frankel

Cache eviction vs. Time-To-Live

✦Cache eviction: which
entities to evict when the
cache is full
• Least Recently Used

• Least Frequently Used

✦TTL: how long will an entity
be kept in the cache

@nicolas_frankel

Choosing the “correct” TTL

✦Less frequent than the
update frequency misses
updates
• More frequent than the

update frequency wastes
resources

✦Clock synchronization

✦ Irregular updates

@nicolas_frankel

Event-driven for the win!

1. If no writes happen, there's
no need to update the
cache

2. If a write happens, then the
relevant cache item should
be updated accordingly

@nicolas_frankel

Databases’ trigger

✦Not all RDBMS implement
triggers

✦How to call an external
process from the trigger?

@nicolas_frankel

The example of MySQL: User-defined function

✦Functions must be written in C++

✦The OS must support dynamic
loading

✦Becomes part of the running server
• Bound by all constraints that apply

to writing server code

✦etc.

-- https://dev.mysql.com/doc/refman/8.0/en/adding-udf.html

@nicolas_frankel

lib_mysqludf_sys
UDF library with functions to interact with the operating system

CREATE TRIGGER MyTrigger
AFTER INSERT ON MyTable
FOR EACH ROW
BEGIN
DECLARE cmd CHAR(255);
DECLARE result INT(10);
SET cmd = CONCAT('update_row', '1');
SET result = sys_exec(cmd);

END;

-- https://github.com/mysqludf/lib_mysqludf_sys

@nicolas_frankel

Cons

✦ Implementation-dependent

✦Fragile

✦Who maintains/debugs it?

✦Resource-consuming if done

frequently

@nicolas_frankel

Change-Data-Capture
“In databases, Change Data
Capture is a set of software design
patterns used to determine and
track the data that has changed
so that action can be taken using the
changed data.

CDC is an approach to data
integration that is based on the
identification, capture and
delivery of the changes made to
enterprise data sources.”

-- https://en.wikipedia.org/wiki/Change_data_capture

@nicolas_frankel

CDC implementation options

1. Polling + Timestamps on rows

2. Polling + Version numbers on rows

3. Polling + Status indicators on rows

4. Triggers on tables

5. Log scanners

-- https://en.wikipedia.org/wiki/Change_data_capture

@nicolas_frankel

“Turning the database inside out” - Martin Kleppman
-- https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/

@nicolas_frankel

What is a transaction/binary/etc. log?

“The binary log contains
‘events’ that describe
database changes such as
table creation operations or
changes to table data.”

-- https://dev.mysql.com/doc/refman/8.0/en/binary-log.html

@nicolas_frankel

Reasons for the log

1. Data recovery

2. Replication

@nicolas_frankel

What if we “hacked” the log?

@nicolas_frankel

Sample MySQL binlog
UPDATE `test`.`t`

WHERE

@1=1 /* INT meta=0 nullable=0 is_null=0 */

@2='apple' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

@3=NULL /* VARSTRING(20) meta=0 nullable=1 is_null=1 */

SET

@1=1 /* INT meta=0 nullable=0 is_null=0 */

@2='pear' /* VARSTRING(20) meta=20 nullable=0 is_null=0 */

@3='2009:01:01' /* DATE meta=0 nullable=1 is_null=0 */

at 569

#150112 21:40:14 server id 1 end_log_pos 617 CRC32 0xf134ad89

#Table_map: `test`.`t` mapped to number 251

at 617

#150112 21:40:14 server id 1 end_log_pos 665 CRC32 0x87047106

#Delete_rows: table id 251 flags: STMT_END_F

@nicolas_frankel

Kind reminder…

✦ Implementation-dependent

✦Fragile

✦Who maintains/debugs it?

@nicolas_frankel

Debezium to the rescue

✦Java-based abstraction layer
for CDC

✦Provided by Red Hat

✦Apache v2 licensed

@nicolas_frankel

Debezium

“Debezium records all
row-level changes
within each database
table in a change
event stream”

-- https://debezium.io/

@nicolas_frankel

Debezium connector plugins

✦Production-ready
• MongoDB
• MySQL
• PostrgreSQL
• SQL Server
• DB2 (!)
• Oracle

✦ Incubating
• Cassandra
• Vitess

@nicolas_frankel

Hazelcast

✦Combines:
• In-Kemory Key-Value Store
• In-memory Stream Processing

Engine

✦Distributed

✦Apache v2 licensed

@nicolas_frankel

Continuous
Business

Events
Pipeline

MQ

Kafka

IoT

Custom
Connector

Enterprise
Applications

Hazelcast

File Watcher

Socket

Database
Events

Sources Sinks

MQ

Kafka

Alerts

Interactive
Analytics

Enterprise
Applications

Hazelcast

Databases

HDFS, S3,
NoSQL

Files

Actionable
Context

Hazelcast
Architecture

The Hazelcast Platform

Transform Combine Stream ML Inference

Stream and Batch
Processing Engine

Compute

In-Memory
Data Store

Storage

Persistence

Microservice
Servlet

Go Client

Analytics
Client

JDBC

Microservice
Servlet

Java Client

Nearcache

SQL

Microservice
Servlet

C#/.Net Client

Nearcache

SQL

Microservice
Servlet

C++ Client

Nearcache

SQL

Microservice
Servlet

JS Client

Nearcache

SQL

Microservice
Servlet

Python Client

Nearcache

SQL

End User Applications

Systems of Record

@nicolas_frankel

Stream Processing Engine
Application Deployment Options

Embedded Mode Client-Server Mode

Application

Java API

Application

Java API

Application

Java API Application

Client

Application

Client

Application

Client

Application

Client

✦ No separate process to manage
✦ Great for microservices
✦ Great for OEM
✦ Simplest for Ops – nothing extra

✦ Separate Cluster
✦ Scale independent of applications
✦ Isolate from application server lifecycle
✦ Managed by Ops

@nicolas_frankel

Pipeline Job

✦Declarative code that
defines and links sources,
transforms, and sinks

✦Platform-specific SDK

✦Client submits pipeline to the
SPE

✦Running instance of pipeline
in SPE

✦SPE executes the pipeline

• Code execution

• Data routing

• Flow control

@nicolas_frankel

Back to our use-case

A job:

1. Watches change events in
the database

2. Analyzes the change event

3. Updates the cache
accordingly

@nicolas_frankel

Talk is cheap, show me the code!

@nicolas_frankel

Recap

✦The caching trade-off

✦CDC copes with this trade-off

✦ Implementation via Hazelcast

@nicolas_frankel

Thanks for your attention!

✦https://blog.frankel.ch/

✦@nicolas_frankel

✦https://bit.ly/evergreen-cache

✦https://slack.hazelcast.com/

✦https://training.hazelcast.com/

