
The Dusk of Manual Code Review
on Pull Requests

@FreddyMallet
@codereviewpad
reviewpad.com

I’m about to turn 50

IN THE PAST TODAY

170 M
Pull Requests Merged in 2021 on Github

Octoverse Report 2021
https://octoverse.github.com/writing-code-faster/

At the inception
Pull Request was a way to welcome unexpected
contributions from unknown and not trustworthy
developers

Today
Pull Request is the backbone of any devops
infrastructure to safely inject expected code changes
done by trustworthy developers.

Automation Everywhere

● To detect build failures
● To detect test failures
● To detect legal issues
● To detect obvious bugs
● To detect obvious vulnerabilities
● To detect compliance issues
● To deploy

But no automation will ever formerly prove
the soundness of a code change

So we “Stop the Line” on each PR

The manual review step is

● Potentially unsafe and especially at scale
● More a validation step than a code review step
● A costly transactional step in time and energy

Since 2015: DORA Metrics

A real paradigm shift
https://cloud.google.com/blog/products/devops-sre/dora-2022-accelerate-state-of-devops-report-now-out

The focus is not anymore on
the productivity but on the
delivery performance

Google 2022 Accelerate State of Devops Report
https://cloud.google.com/blog/products/devops-sre/dora-2022-accelerate-state-of-devops-report-now-out

Focus on Lead Time for Changes

LinearB Q1 2022 Labs study
https://linearb.io/engineering-benchmarks/

Based on a survey from more than 12’000 developers

“Detailed code reviews negatively affect
software delivery performance”

Octoverse Report 2021
https://octoverse.github.com/writing-code-faster/

74%
percentage of PRs across all Github public projects without a single review comment

from January to March 202O *

Reviewpad: Looking Into 2020’S Pull Requests based on 2 631 366 pull requests across 283 034 projects
https://reviewpad.com/blog/2020s-pull-requests-part-ii/

64%
of Pull Requests are merged without any code changes as a result of the review *

Codeball 2022 study based on 2,340,078 PRs spread across 7,836 organizations
https://codeball.ai/blog/waiting-for-code-review

“With each additional reviewer, the chance
to merge a PR in a day or less goes down

by about 17%”

Octoverse Report 2021
https://octoverse.github.com/writing-code-faster/

SHIP / SHOW / ASK Model
By Rouan Wilsenach 2021
https://martinfowler.com/articles/ship-show-ask.html

The Principles

● SHIP
Bypass the review when you know it’s useless
approve, merge

● SHOW
Ask for a non-blocking review when you know your code is “good-to-go”
approve, merge, post-merge review

● ASK
Ask for a blocking review
assign

Big Limitation

The evaluation is done by the author
of the code change him/herself

What’s the difference
between a non-blocking and
a blocking review ?????

A change with low risk to impact the DORA Metrics

● Deployment Frequency
● Lead Time for Changes
● Time to Restore Service

● Change Failure Rate

What can be a risky code change ?

What can be a risky code change ?

● Pushed by a new joiner or new committer
● Involving an error prone instruction (regex, multithreading, …)
● Containing an advanced design pattern
● Updating a permanent data structure (CB)
● Making a call to another system
● Done on a piece of code involved in some failures in the past
● Done on a piece of code surrounded by the @critical annotation
● Too big, too complex
● …

Risk Assessment Model

To evaluate the probability of a code
change to degrade the Change Failure
Rate

We need a way to automatically
assess the riskiness of a code
change

Hold on! Isn’t it a bad
practice to review a code
after the merge?

Automation to the rescue

Main Features

● Configurable risk assessment rules
● Risk assessment rules automatically inferred from the past review activities
● Auto-approve mechanism
● Auto-merge mechanism
● Merge-Queue
● Configurable review assignment mechanism
● Risky code highlighter
● Configurable PR labelling mechanism

(see kubernetes and reviewpad Github projects)

Specification and automation
of the team’s review process
to decide if to review, when
to review, what to review and
who should review

Which are the Players?
Reviewpad
Codeball
Gitstream by Linearb
Mergify

reviewpad

● Configurable risk assessment rules
● Risk assessment rules automatically inferred from the past
● Auto-approve mechanism
● Auto-merge mechanism
● Merge-Queue
● Configurable review assignment mechanism
● Risky code highlighter
● PR triage mechanism

CodeBall

● Configurable risk assessment rules
● Risk assessment rules automatically inferred from the past
● Auto-approve mechanism
● Auto-merge mechanism
● Merge-Queue
● Configurable review assignment mechanism
● Risky code highlighter
● PR triage mechanism

Mergify

● Configurable risk assessment rules
● Risk assessment rules automatically inferred from the past
● Auto-approve mechanism
● Auto-merge mechanism
● Merge-Queue
● Configurable review assignment mechanism
● Risky code highlighter
● PR triage mechanism

Gitstream by Linearb

Demo of reviewpad on reviewpad

Thanks !
Any Questions ?

@FreddyMallet
@codereviewpad
reviewpad.com

